Суперкомпьютер Summit симулирует «торможение» при посадке на Марс

<br />
Суперкомпьютер Summit симулирует «торможение» при посадке на Марс<br />

Фото:
AstroNews

Комментарии

Транспортный корабль, который будет перевозить людей на Красную планету, будет выглядеть как «двухэтажный дом, который вы пытаетесь посадить на другой планете. Тепловой экран в передней части корабля составляет чуть более 16 метров в диаметре, а само транспортное средство при посадке весит десятки тонн. Это очень много», — говорит Эшли Корзун, инженер-исследователь аэрокосмической техники в исследовательском центре Лэнгли НАСА.

Корабль для исследования планеты человеком будет весить значительно больше, чем знакомые нам роверы размером с автомобиль, такие как Curiosity, который успешно совершил посадку на поверхности планеты с помощью парашюта.

«Вы не можете использовать парашюты для посадки очень больших грузов на поверхности Марса», — сказал Корзун. «Вы должны сделать что-то еще».

НАСА планирует что люди отправятся на Марс к середине-концу 2030-х годов, так что инженеры уже некоторое время работали над задачей посадки. Теперь у них есть многообещающее решение в области замедления скорости снижения с помощью привода от двигателя.

«Вместо того, чтобы толкать вас вперед, реактивные двигатели замедляют вас, как тормоза», — сказал Корзун.

Возглавляемая Эриком Нильсеном, старшим научным сотрудником НАСА Лэнгли, группа ученых и инженеров, включая Корзуна, использует Summit, самый быстрый в мире суперкомпьютер в Национальной лаборатории Окленд Ридж (ORNL), для моделирования торможения при высадке людей на Марсе.

«Мы можем продемонстрировать довольно революционную производительность на Summit по сравнению с тем, к чему мы привыкли с традиционным вычислительным подходом», — сказал Нильсен.

Команда использует свое программное обеспечение под названием FUN3D для моделирования спуска транспортного средства на Марс. Приложение использует большие системы уравнений для моделирования мелкомасштабных взаимодействий жидкостей и газов во время турбулентности — в нашем случае, чтобы соединить аэродинамические эффекты, создаваемые транспортным кораблем и атмосферой Марса.

«FUN3D и сами вычислительные возможности полностью изменили игру, что позволило нам продвинуться вперед в разработке технологий посадки, которая может использоваться на Земле, Луне и Марсе», — сказал Корзун.

Курс на посадку

НАСА уже успешно посадило восемь кораблей на Марсе, включая мобильные научные лаборатории, оснащенные камерами, датчиками и устройствами связи, так что ученые уже знакомы с проблемами при посадке на планету.

Марсианская атмосфера примерно в 100 раз тоньше (менее плотная), чем атмосфера Земли, что приводит к быстрому спуску с орбиты — примерно шесть-семь минут, вместо 35-40 минут при посадке на Землю.

«Мы не можем сопоставить всю необходимую физику в наземных или летных испытаниях на Земле, поэтому мы очень зависимы от вычислительных возможностей», — сказал Корзун. «Это действительно первая возможность — на этом уровне точности и разрешения мы смогли увидеть, что происходит с кораблем, когда он тормозит с включенными тормозными двигателями».

Во время такого спуска корабль чувствителен к большим колебаниям из-за аэродинамических сил, которые могут повлиять на характеристики двигателя и способность экипажа контролировать посадку в выбранном месте.

Команде нужен мощный суперкомпьютер, такой как Summit на 200 петафлоп, чтобы имитировать весь цикл посадки корабля в различных атмосферных условиях.

Чтобы предсказать, что произойдет в марсианской атмосфере, и как следует проектировать и контролировать двигатели для безопасности экипажа и миссии, исследователям необходимо исследовать турбулентные потоки в больших масштабах времени. Чтобы точно воспроизвести эти условия, команда должна смоделировать размеры спускаемого аппарата и его двигателей, местные атмосферные условия и условия работы двигателей вдоль траектории спуска.

На Summit команда моделирует посадочный аппарат в нескольких вариантах посадки. «Одним из основных преимуществ Summit для нас является абсолютная скорость машины», — сказал Нильсен.

Небесная скорость

Команда Нильсена потратила несколько лет на оптимизацию FUN3D — кода, который несколько десятилетий совершенствовал аэродинамическое моделирование. Используя скорость графических процессоров Summit, команда Нильсена сообщает о 35-кратном увеличении производительности на вычислительный узел.

«Обычно мы ждем от пяти до шести месяцев, чтобы получить ответ, на Summit мы получаем эти ответы примерно через четыре-пять дней», — сказал он. «Кроме того, Summit позволяет нам выполнять пять или шесть таких симуляций одновременно, в конечном итоге сокращая время выполнения работ с двух-трех лет до рабочей недели».

«Визуализация очень важна для возможностей Summit, что позволило нам охватить как очень маленькие, так и действительно большие структуры потоков», — сказал Корзун. «Я вижу, что происходит прямо на выходе из сопла ракетного двигателя, а также на десятки метров вперед в направлении движения корабля».

«Несмотря на то, что мы возвращаемся на Луну, долгосрочной целью НАСА является исследование человеком поверхности Марса. Эти результаты являются информативными испытаниями, такими как испытания в аэродинамической трубе, которые мы проведем в ближайшие пару лет, сказал Корзун. «Так что эти данные будут полезны в течение очень долгого времени».

rambler